3.5.89 \(\int \frac {\sec ^3(c+d x)}{a+b \sec (c+d x)} \, dx\) [489]

Optimal. Leaf size=85 \[ -\frac {a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac {2 a^2 \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {\tan (c+d x)}{b d} \]

[Out]

-a*arctanh(sin(d*x+c))/b^2/d+2*a^2*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/b^2/d/(a-b)^(1/2)/(a+b)
^(1/2)+tan(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3875, 3874, 3855, 3916, 2738, 214} \begin {gather*} \frac {2 a^2 \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d \sqrt {a-b} \sqrt {a+b}}-\frac {a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac {\tan (c+d x)}{b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + b*Sec[c + d*x]),x]

[Out]

-((a*ArcTanh[Sin[c + d*x]])/(b^2*d)) + (2*a^2*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b
]*b^2*Sqrt[a + b]*d) + Tan[c + d*x]/(b*d)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3874

Int[csc[(e_.) + (f_.)*(x_)]^2/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[Csc[e + f*x],
 x], x] - Dist[a/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3875

Int[csc[(e_.) + (f_.)*(x_)]^3/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(b*f), x
] - Dist[a/b, Int[Csc[e + f*x]^2/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x)}{a+b \sec (c+d x)} \, dx &=\frac {\tan (c+d x)}{b d}-\frac {a \int \frac {\sec ^2(c+d x)}{a+b \sec (c+d x)} \, dx}{b}\\ &=\frac {\tan (c+d x)}{b d}-\frac {a \int \sec (c+d x) \, dx}{b^2}+\frac {a^2 \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{b^2}\\ &=-\frac {a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac {\tan (c+d x)}{b d}+\frac {a^2 \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{b^3}\\ &=-\frac {a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac {\tan (c+d x)}{b d}+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^3 d}\\ &=-\frac {a \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac {2 a^2 \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} b^2 \sqrt {a+b} d}+\frac {\tan (c+d x)}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.41, size = 115, normalized size = 1.35 \begin {gather*} \frac {-\frac {2 a^2 \tanh ^{-1}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+a \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+b \tan (c+d x)}{b^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + b*Sec[c + d*x]),x]

[Out]

((-2*a^2*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + a*(Log[Cos[(c + d*x)/2] - Sin
[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + b*Tan[c + d*x])/(b^2*d)

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 123, normalized size = 1.45

method result size
derivativedivides \(\frac {-\frac {1}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{2}}+\frac {2 a^{2} \arctanh \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{b^{2} \sqrt {\left (a +b \right ) \left (a -b \right )}}-\frac {1}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{2}}}{d}\) \(123\)
default \(\frac {-\frac {1}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{2}}+\frac {2 a^{2} \arctanh \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{b^{2} \sqrt {\left (a +b \right ) \left (a -b \right )}}-\frac {1}{b \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{2}}}{d}\) \(123\)
risch \(\frac {2 i}{d b \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{a \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d \,b^{2}}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-b \sqrt {a^{2}-b^{2}}}{a \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d \,b^{2}}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{b^{2} d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{b^{2} d}\) \(216\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/b/(tan(1/2*d*x+1/2*c)+1)-a/b^2*ln(tan(1/2*d*x+1/2*c)+1)+2*a^2/b^2/((a+b)*(a-b))^(1/2)*arctanh((a-b)*ta
n(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/b/(tan(1/2*d*x+1/2*c)-1)+a/b^2*ln(tan(1/2*d*x+1/2*c)-1))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 168 vs. \(2 (76) = 152\).
time = 3.77, size = 392, normalized size = 4.61 \begin {gather*} \left [\frac {\sqrt {a^{2} - b^{2}} a^{2} \cos \left (d x + c\right ) \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - {\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}, \frac {2 \, \sqrt {-a^{2} + b^{2}} a^{2} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) - {\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a^2 - b^2)*a^2*cos(d*x + c)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b
^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - (a^3 -
 a*b^2)*cos(d*x + c)*log(sin(d*x + c) + 1) + (a^3 - a*b^2)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(a^2*b - b^
3)*sin(d*x + c))/((a^2*b^2 - b^4)*d*cos(d*x + c)), 1/2*(2*sqrt(-a^2 + b^2)*a^2*arctan(-sqrt(-a^2 + b^2)*(b*cos
(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c)))*cos(d*x + c) - (a^3 - a*b^2)*cos(d*x + c)*log(sin(d*x + c) + 1) + (
a^3 - a*b^2)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(a^2*b - b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d*cos(d*x +
c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{3}{\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+b*sec(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**3/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [A]
time = 0.49, size = 152, normalized size = 1.79 \begin {gather*} \frac {\frac {2 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )} a^{2}}{\sqrt {-a^{2} + b^{2}} b^{2}} - \frac {a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} + \frac {a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} - \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} b}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c
))/sqrt(-a^2 + b^2)))*a^2/(sqrt(-a^2 + b^2)*b^2) - a*log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^2 + a*log(abs(tan(1/
2*d*x + 1/2*c) - 1))/b^2 - 2*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*b))/d

________________________________________________________________________________________

Mupad [B]
time = 1.21, size = 119, normalized size = 1.40 \begin {gather*} \frac {\mathrm {tan}\left (c+d\,x\right )}{b\,d}-\frac {2\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^2\,d}-\frac {a^2\,\mathrm {atan}\left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}\right )\,2{}\mathrm {i}}{b^2\,d\,\sqrt {a^2-b^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^3*(a + b/cos(c + d*x))),x)

[Out]

tan(c + d*x)/(b*d) - (2*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(b^2*d) - (a^2*atan((a*sin(c/2 + (d*x)
/2)*1i - b*sin(c/2 + (d*x)/2)*1i)/(cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2)))*2i)/(b^2*d*(a^2 - b^2)^(1/2))

________________________________________________________________________________________